
Unidad I: Eventos

 De acuerdo con Javasoft, las principales características de partida que han

originado el nuevo modelo de manejo de eventos en el AWT, son:

o Que sea simple y fácil de aprender

o Que soporte una clara separación entre el código de la aplicación y el

código del interfaz

o Que facilite la creación de robustos controladores de eventos, con menos

posibilidad de generación de errores (chequeo más potente en tiempo de

compilación)

o Suficientemente flexible para permitir el flujo y propagación de eventos

o Para herramientas visuales, permitir en tiempo de ejecución ver cómo se

generan estos eventos y quien lo hace

o Que soporte compatibilidad binaria con el modelo anterior

1.1. Tipos de eventos

Los eventos ahora están organizados en jerarquías de clases de eventos.

El nuevo modelo hace uso de fuentes de eventos (Source) y receptores de

eventos (Listener). Una fuente de eventos es un objeto que tiene la capacidad de

detectar eventos y notificar a los receptores de eventos que se han producido esos

eventos. Aunque el programador puede establecer el entorno en que se producen

esas notificaciones, siempre hay un escenario por defecto.

Un objeto receptor de eventos es una clase (o una subclase de una clase) que

implementa un interfaz receptor específico. Hay definidos un determinado número

de interfaces receptores, donde cada interfaz declara los métodos adecuados al

tratamiento de los eventos de su clase. Luego, hay un emparejamiento natural

entre clases de eventos y definiciones de interfaces. Por ejemplo, hay una clase

de eventos de ratón que incluye muchos de los eventos asociados con las

acciones del ratón, y hay un interfaz que se utiliza para definir los receptores de

esos eventos.

Un objeto receptor puede estar registrado con un objeto fuente para ser notificado

de la ocurrencia de todos los eventos de la clase para los que el objeto receptor

está diseñado. Una vez que el objeto receptor está registrado para ser notificado

de esos eventos, el suceso de un evento en esta clase automáticamente invocará

al método sobreescrito del objeto receptor. El código en el método sobreescrito

debe estar diseñado por el programador para realizar las acciones específicas que

desee cuando suceda el evento.

Algunas clases de eventos, como los de ratón, involucran a un determinado

conjunto de eventos diferentes. Una clase receptor que implemente el interfaz que

recoja estos eventos debe sobreescribir todos los métodos declarados en el

interfaz. Para prevenir esto, de forma que no sea tan tedioso y no haya que

sobreescribir métodos que no se van a utilizar, se han definido un conjunto de

clases intermedias, conocida como clases Adaptadoras (Adapter).

Estas clases Adaptadores implementan los interfaces receptor y sobreescriben

todos los métodos del interfaz con métodos vacíos. Una clase receptor puede

estar definida como clase que extiende una clase Adapter en lugar de una clase

que implemente el interfaz. Cuando se hace esto, la clase receptor solamente

necesita sobreescribir aquellos métodos que sean de interés para la aplicación,

porque todos los otros métodos serán resueltos por la clase Adapter

Uno de los objetos receptor que se implementan con mayor frecuencia son los de

la interfaz WindowListener en el manejo de ventanas, lo que haria necesario

sobreescribir los seis métodos de la interfaz. Por lo que la otra clase receptor que

se extiende es la clase WindowAdapter en vez de implementar la

interfaz WindowListener. La clase WindowAdapter sobrescribe los seis

métodos de la interfaz con métodos vacíos, por lo que la clase receptor no

necesita sobreescribir esos seis métodos solo el que necesita.

1.2. Generación y propagación de eventos

El paquete java.awt.event es el que contiene la mayor parte de las clases e

interfaces de eventos. El modelo de delegación de eventos es un concepto que

trabaja de la siguiente manera:

Una fuente genera un evento y lo envía a uno a más oyentes o auditores, que han

estado simplemente esperando hasta que reciben ese evento y una vez recibido lo

procesan y lo devuelven.

Una fuente es un objeto que genera un evento. Esto ocurre cuando cambia de

alguna manera el estado interno de ese objeto. Las fuentes pueden generar más

de un tipo de eventos.

Una fuente tiene que ir acompañada de auditores para que estos reciban las

notificaciones sobre el tipo específico de evento, cada tipo de evento tiene su

propio método de registro. La forma general es:

Public void addTypeListener(TypeListener el)

Por ejemplo el método que registra o acompaña a un auditor de evento de teclado

es addKeyListener(). Cuando ocurre un evento, se notifica a todos los auditores

registrados, que reciben una copia del objeto evento. Esto es lo que se conoce

como multicasting del evento.

Una fuente también puede proporcionar un método que permita a un auditor

eliminar un registro en un tipo específico de evento y la forma general es:

Public void removeTypeListener(TypeListener el);

Aquí Type es el nombre del evento y el es una referencia al auditor. Por ejemplo

para borrar un auditor del teclado se llamaría removeKeyListener().

1.3. Métodos de control de eventos

Cuando una acción sobre un componente genera un evento, se espera que

suceda algo, entendiendo por evento un mensaje que un objeto envía a algún

otro objeto.

1.4. Creación de eventos

